
The gmp package∗

Enrico Gregorio
enrico DOT gregorio AT univr DOT it

March 10, 2011

Introduction

ConTEXt is far more superior to LATEX in its integration of METAPOST. On the
other hand, few people are going to do the big jump towards ConTEXt, especially
if they have to use maths in their documents.

Nonetheless, sometimes a better integration between LATEX and METAPOST

would be welcome. One great package is mfpic, but its philosophy is different: it
defines a set of TEX macros which are afterwards interpreted as METAPOST. It
suffers a bit from its METAFONT origin: the user has to pass the dimensions of the
created figure in advance, while METAPOST is able to figure them out by itself.

A very recent package does similar things as gmp, Vafa Khalighi’s mpgraphics,
from which I learned to add the runs and clean keys. However also Vafa’s package
can’t pass parameters to the METAPOST pictures at run time. I have to thank Vafa
Khalighi because his mpgraphics package helped me to straighten some roughness
from the preliminary version of this package. Another package is oriented to this
purpose, emp by Thorsten Ohl, but it has not been updated since 1997.

What I wanted was a package which could do automatically the compilation of
METAPOST output and, moreover, could pass parameters to METAPOST. Wouldn’t
it be nice being able to define a graphic object in terms of the current text width?
Or of the current baseline skip? Or of some user defined parameter? A “reusable”
object which can change depending on current conditions? This package is an
answer; it runs under LATEX, pdfLATEX and X ELATEX.1

This has some consequences; for example, METAPOST labels will usually go
inside

\btex ... etex

∗This document corresponds to gmp v1.0, dated 2011/03/10.
1It runs even under LuaLATEX, I’d say, but in this case it doesn’t exploit the possibility of a

direct call to the METAPOST library.

1

Figure 1 The code for the swelled rule

\begin{mpost}[name=swelled]
breadth=.667\mpdim{\linewidth};
height=2pt;
x1=0;
x2=x6=.333x4;x5=x3=.667x4;
x4=breadth;
y1=y4=height/2;
y2=y3=height;
y5=y6=0;
fill z1--z2--z3--z4--

z5--z6--cycle;
\end{mpost}

instead of the normal btex ... etex. Later examples will show this is an enrich-
ment, rather than a limitation.

Consider a swelled rule: we want its width to be two thirds of the line width.
But, of course, we should not simply scale it when the line width changes. Here is
an example; the swelled rule for the current line width:

We follow it with a scaled version corresponding to half line width (on the left)
and a true swelled rule constructed for a halved line width:

The difference is clear, but I must admit to have cheated: in this case it would
be sufficient to scale the swelled rule only in the horizontal direction. However,
scaling is not always the correct answer, since it affects all rule widths and character
sizes, for example. You can see the input for the swelled rule in Figure 1, taken
from Peter [3].

The command \mpdim takes as an argument a length (rigid or rubber) and
transforms it into a dimension understood by METAPOST (i.e., it strips off possible
‘plus’ and ‘minus’ specifications). To METAPOST eyes, it is an ‘unnamed variable’
like ‘whatever’, except that it has the value of the dimension given as argument;
see the description in Section 5

What I did was to define a METAPOST input for the swelled rule, to assign it
a name and to use it when needed. For example, the above verbatim environment
surrounded by swelled rules has been written as in Figure 2.

A recent message on comp.text.tex2 asked how to realize in LATEX chapter
2http://groups.google.com/group/comp.text.tex/browse_frm/thread/516fb024bb83bcda

2

Figure 2 The input for the nice verbatim
\begin{center}
\usempost{swelled}*[3ex]
\begin{minipage}{.5\linewidth}
\begin{verbatim}
\begin{mpost}[name=swelled]
breadth=.667\mpdim{\linewidth};
...
\end{mpost}
\end{verbatim}
\end{minipage}*[3ex]
\usempost{swelled}
\end{center}

headers like the ones in the manual “ConTEXt, an excursion”3 and Taco Hoekwater
kindly provided the code that’s used. Here I propose a macro that solves the
problem, once it’s integrated in a chapter style for memoir or titlesec; the META-
POST code is found in table 1 and the result is shown here

How to draw graphics

Now you can return to the first page and see that the title for the introduction
was typeset inside a similar drawing, but of different size. The METAPOST code is
exactly the same as Taco’s, except for the call of mpost instead of \startMPgraphic
and \endMPgraphic. The LATEX code used is

\newsavebox{\tacochapterbox}
\newcommand{\tacochapterhead}[1]{%

\sbox\tacochapterbox{\Large\bfseries #1}%
{\ooalign{%

\MPclipOne{\mpdim{\wd\tacochapterbox+6pc}} % width
{\mpdim{\ht\tacochapterbox+3pc}} % height
{8} % thickness of the curve
{(.7,.7,.7)} % color of the curve
{red} % color of the spots

\cr\hfill\raisebox{\dimexpr.5\ht\tacochapterbox+1.5pc\relax}
{\box\tacochapterbox}\hfill}}}

\tacochapterhead{How to draw graphics}

Use a high level package such as titlesec in order to draw fancy ornaments around
the chapter title; an example might be

3http://www.pragma-ade.nl/general/manuals/mp-cb-en.pdf

3

\newcommand{\chapformat}[1]{\tacochapterhead{\thechapter.\ #1}}
\titleformat{name=\chapter}[block]

{\large\bfseries\filcenter}{}{0pt}{\chapformat}
\titleformat{name=\chapter,numberless}[block]

{\large\bfseries\filcenter}{}{0pt}{\tacochapterhead}

which takes care also of numberless chapter headings.
Another useless application comes from the Metafun manual, by Hans Hagen [1]:

a representation of a counter using vertical bars with a diagonal one after four of
them, just like when counting on a piece of scratch paper. We can borrow the
METAPOST input from Hans, and define the command you find in table 2.

Now we have a new environment and we can use it at every nesting level:

1. A first item, to remember that METAPOST is a big fun, for the following
reasons:

it has a syntax very similar to METAFONT;

it outputs very good PostScript;

there are many people using it;

it is very simple to use;

it integrates easily with LATEX;

some other reason just to arrive to six.

2. A second item, to remember that LATEX users can benefit from the use of
METAPOST.

The input for this nested enumeration was

\begin{enumerate}
\item A first ...

\begin{scratchenum}
\item it has ...
...

\end{scratchenum}
\item A second ...

\end{enumerate}

Of course, if we need to use the scratchenum only at the first level of nesting,
a definition such as

\newenvironment{scratchenum}
{\begin{enumerate}
\renewcommand{labelenumi}{\scratchcount{\arabic{enumi}}}%

}
{\end{enumerate}}

would have sufficed. We give as argument to \scratchcount the representation of
the counter as an arabic number; METAPOST does all the necessary calculations.

4

Table 1 METAPOST code for a fancy chapter heading
%macro arguments:
%#1 = desired width
%#2 = desired height
%#3 = pen thickness (relative)
%#4 = line color
%#5 = dot color
\def\MPclipOne#1#2#3#4#5%

{\begin{mpost}
w := #1; width := 100; wfactor := w/width;
h := #2; height := 100; hfactor := h/height;
color lightred; lightred := (.90,.50,.50);
color lightgray; lightgray := (.95,.95,.95);
color gray; gray := (.50,.50,.50);
def random_delta (expr d) =

d-(uniformdeviate 2d)
enddef;
z1 = (0,height);
z2 = (0,0);
z3 = (width,0);
z4 = (width,height);
z5 = (width+random_delta(.2width),height+random_delta(.2height));
z6 = (.5width+random_delta(.1width),height+random_delta(.1height));
pickup pencircle

xscaled (#3/wfactor)
yscaled (#3/(2*hfactor))
rotated 30;

draw z5..z1..z2..z3..z4..z6 withcolor #4;
pickup pencircle

xscaled (#3/wfactor)
yscaled (#3/hfactor);

draw z1 withcolor #5;
draw z2 withcolor #5;
draw z3 withcolor #5;
draw z4 withcolor #5;
draw z5 withcolor #5;
draw z6 withcolor #5;
newwidth := (xpart (urcorner currentpicture)) -

(xpart (llcorner currentpicture));
newheight := (ypart (urcorner currentpicture)) -

(ypart (llcorner currentpicture));
currentpicture := currentpicture
xscaled (w/newwidth) yscaled (h/newheight);

\end{mpost}}

5

Table 2 The \scratchcount macro
\newcommand{\scratchcount}[1]{%

\begin{mpost}
n:=#1;
height := 3/5\mpdim{\baselineskip} ;
span := 1/3 * height ;
drift := 1/10 * height ;
pickup pencircle scaled (1/12 * height) ;
def d = (uniformdeviate drift) enddef ;
for i := 1 upto n :

draw
if (i mod 5)=0 : ((-d-4.5span,d)--(+d-0.5span,height-d))
else : ((-d,+d)--(+d,height-d)) fi
shifted (span*i,d-drift) ;

endfor;
picture cp ;
cp := currentpicture ; %for readability
setbounds currentpicture to

(llcorner cp shifted (0,-ypart llcorner cp) --
lrcorner cp shifted (0,-ypart lrcorner cp) --
urcorner cp -- ulcorner cp -- cycle) ;

\end{mpost}}
\makeatletter
\newenvironment{scratchenum}{\begin{enumerate}

\@namedef{label\@enumctr}{\scratchcount{\arabic{\@enumctr}}}%
}{\end{enumerate}}

\makeatother

6

Figure 3 Expanded definition for the scratch numbers; the \VCEN macro is for
centering the object.
\newcommand\lista[2][black]{%
\VCEN{\begin{mpost}[mpmem=metafun]
n:=#2 ; color fuzzy_color ; fuzzy_color:=#1 ;

height := 5pt ;
span := 1/3 * height ;
drift := 1/10 * height ;
hsize := .7\mpdim{\linewidth} ;
vstep := 10pt ;
xmax := hsize div 5span ;

pickup pencircle scaled (1/12 * height) ;
def d = (uniformdeviate drift) enddef ;
for i := 1 upto n :

xpos := ((i-1) mod (5*xmax))*span ;
ypos := ((i-1) div (5*xmax))*vstep ;
draw

if (i mod 5)=0 : ((-d-4.5span,d)--(+d-0.5span,height-d))
else : ((-d,+d)--(+d,height-d)) fi
shifted (xpos,-ypos+d-drift) withcolor fuzzy_color ;

endfor;

picture cp ;
cp := currentpicture ; % for readability
if (ypart ulcorner cp - ypart llcorner cp) <= vstep :
setbounds currentpicture to

(llcorner cp shifted (0,-ypart llcorner cp) --
lrcorner cp shifted (0,-ypart lrcorner cp) --
urcorner cp -- ulcorner cp -- cycle) ;

fi
\end{mpost}}}

7

Figure 4 La lista

Italia 640

Alemagna 231

Francia 100

Turchia 91

Spagna 1003

We can expand on this theme, to represent greater numbers. You can see it in
Figure 3. After this, an input like

\begin{tabular}{llr}
\multicolumn{2}{c}{\textbf{La lista}}\\\hline\\
Italia & \lista[red]{640} & 640\\\\
Alemagna & \lista{231} & 231\\\\
Francia & \lista[red]{100}& 100\\\\
Turchia & \lista{91}& 91\\\\
Spagna & \lista[red]{1003} & 1003\\\\\hline
\end{tabular}

gives what you can see in figure 4, but if we put it inside a minipage, we can
render the same list in other ways, automatically. You see it in Figure 5.

Note how we can pass to the METAPOST input some parameters, a dimension
as before, and a color specification.

It is not necessary to put mpost environments inside a definition, as we have
already seen. We can assign a name to the object and use it as many times as we
like, even subject to transformations with the same syntax as \includegraphics.
The following example is from the METAPOST package drv, which requires a double
run of METAPOST:

\begin{mpost}[runs=2,mpsettings={input drv;},name=der1]
jgm 0 "A\vdash B";
jgm 1 "B\vdash C";
jgm 2 "A\vdash C";
nfr 0 () ("f", 1);

8

Figure 5 The tables have been reduced at 70%. On the right the table has been
put in a minipage of size .5\linewidth; on the left the size was .4\linewidth

La lista

IT

DE

FR

TR

ES

La lista

IT

DE

FR

TR

ES

9

nfr 1 () ("g", 1);
nfr 2 (0, 1) ("\circ", 1);
draw drv_tree;
\end{mpost}
\usempost{der1}\quad
\usempost[angle=90]{der1}

A ` B
f

B ` C
g

A ` C
◦

A
`
B

f
B
`
C

g

A
`
C

◦

If a METAPOST object is not assigned a name it is immediately used and,
obviously, it cannot be used any more. Well, this is not strictly true: every object
has a number corresponding to an mps file named 〈filename〉+mp〈number〉.mps and
it would be possible to include it in the usual way. Here 〈filename〉 is the name of
the root LATEX file. However, the 〈number〉 is not fixed, since insertion of other
objects before a certain one will change its assigned number.

There are three ways for typesetting a document using gmp, which correspond
to the following package options:

shellescape exploits the ‘shell escape’ feature present in most TEX distributions:
every mpost environment calls a run of METAPOST, setting the object
immediately (you have to call the typesetting engine with the necessary
command line option, see later);

noshellescape defers the METAPOST runs to the end of the LATEX run, the user
has to launch them by hand—in this case a very simple shell script is written
for doing all the business;

nowrite inhibits writing METAPOST files and disables running METAPOST: when
the document is finished and no more modifications to the METAPOST objects
are needed, we can set this option and read the mps files already compiled in
previous runs.

The ‘shell escape’ feature is very handy, but someone may feel uneasy with it.
For security reasons, TEX distributions usually disable it by default and it must be
explicitly requested by calling

latex -shell-escape 〈filename〉
pdflatex -shell-escape 〈filename〉
xelatex -shell-escape 〈filename〉

depending on what engine you are using; see your system’s documentation for
the actual call: for TEX Live the command line option -shell-escape, while for
MiKTEX it’s -enable-write18.

10

In case some METAPOST graphics doesn’t compile properly, it’s better to
switch to noshellescape and launch the shell script after a new LATEX run: from a
terminal window say sh 〈filename〉+mp.sh, where 〈filename〉 stands for your main
document’s name. This will run METAPOST in ‘error stop mode’, so that you’ll
probably get a clue about what is going wrong.

If one uses X ELATEX, all mps files will be converted to pdf via epstopdf.

1 The name of the package and its workings
I wanted a successor of emp, but fmp was out of the question: this is a package for
including functional METAPOST in LATEX. So I chose gmp.

Here is a brief description of how the package works. A METAPOST object is
defined through a mpost environment (see Section 7). When such an environment
is found, an external METAPOST file is written and processed (either immediately
or after the LATEX run, at the user’s choice). After processing, a file called
〈filename〉+mp〈number〉.mps is produced, which is then included in the LATEX
output with \includegraphics, but without user’s intervention. If the object is
assigned a name, it can be included as many times as desired.

The gmp package depends on xkeyval, ifxetex, ifpdf and, of course, graphicx. If
you have to pass options to this one, load it before gmp.

2 File names
This package doesn’t support file names containing spaces. Quoting D. E. Knuth, if
you’re upset about this, you shouldn’t be: spaces in file names might be supported,
but every system has its idiosyncrasies and quotes around the name aren’t always
the correct answer. Avoiding strange characters in file names is the best strategy
for being compatible with most platforms.

3 To do
Find out a way to coerce creation of all auxiliary files in a subdirectory of the
current directory, in order not to fill it with junk, besides what’s really necessary.

4 The package options
We have seen some of the package options, but now I will present them more
formally. Some of them will be grouped together; the first one of the group is the
default.

tex and latex

METAPOST is able to use either Plain TEX or LATEX for typesetting the ‘labels’. If
you are using ten point type and the usual Computer Modern fonts or no label

11

at all, it is not necessary to set this option (the default is tex). On the other
hand, if you are using different fonts or different type sizes, then latex is necessary.
The package creates a crude preamble keeping the type size of your document;
insertion of any other package or of a different class must be explicitly done with
the commands \usempxclass and \usempxpackage which have the same syntax
as \documentclass and \usepackage. See Section 5 for a description of the
commands; their names should remember that they are used for an ‘extension’ of
METAPOST, namely the preprocessor that typesets the labels making them into
METAPOST pictures. However the option can be overridden for any picture, see
later on.

noshellescape and shellescape

The shellescape option uses the \write18 feature found in many TEX distribu-
tions (all the up-to-date ones based on Web2C such as TEX Live, and MiKTEX).
Its purpose is to stop momentarily the TEX compilation for executing the META-
POST run after a mpost environment has been found. LATEX or pdfLATEX have to
be called with the -shell-escape command line option or -enable-write18 on
MiKTEX.

With noshellescape all shell commands are collected in a batch file and LATEX
will remember users to execute it at the end of the run. On the subsequent LATEX
run, all objects should be in place.

When a compiled METAPOST object is not found at the proper place, a box like
the one in the margin is printed. The same will happen in presence of compilationMP
errors, precisely when the proper mps file is not found.

When using the noshellescape option, it may happen that after a compilation
the objects are misplaced, for example if some new object has been added; running
METAPOST on the created files and another LATEX run should fix this. The default
option is noshellescape.

write and nowrite

The nowrite option is useful when all METAPOST objects are present in the
document, they are in their final form and all of them have been processed. By
setting the nowrite option, no writing of METAPOST files and no compilation
take place, speeding up the process. I would have called this option final and its
contrary draft, but this usage conflicts with the workings of graphicx. The default
option is write, so it’s not necessary to specify it.

envname

You can change the name of the environment for the METAPOST objects; the
default is mpost. If you don’t like it or you want this name for your favorite
environment, you can say

envname=〈string〉

12

and 〈string〉 will be used for introducing METAPOST objects. This key must be
specified only as a package option, not in the argument of \gmpoptions.4

extension

If the root LATEX file is called file, then the compiled mps files will be named
file+mp〈number〉.mps. The string +mp is the mp-extension, which can be modified
by saying

extension=〈string〉

in the options to gmp; the 〈string〉 should consist only of printable ASCII characters
with no special meaning to TEX. So, with a main file called paper.tex, the created
files will be named paper+mp0001.mp and so on; with

\gmpoptions{extension=--mp--}

the names will be paper–mp–0001.mp and so on. Don’t use a slash in the mp-
extension! Leave this option to the default value, unless you happen to have files
whose name contains the string +mp.

everymp

Here you can set whatever you want to be present in all METAPOST objects, for
example input files. Any set of METAPOST statements can be given in braces, for
example

everymp={input boxes;}

Since these are METAPOST statements, don’t forget the trailing semicolon. If you
have a long list of METAPOST macros that should be loaded for each picture, it’s
better to save them in a file and input this one with the everymp key. When your
document uses font packages, you may need to say

everymp={prologues=3;}

so that your mps files will contain correct references to the fonts; this is automati-
cally done when the typesetting engine is X ELATEX.

clean=none|aux|mp

After the compilation, there will be many auxiliary files around. The essential
ones are only those necessary for the picture inclusion, namely the mps or pdf
final results. With clean=none nothing will be removed, with clean=aux the files
with extension .log, .mpx and .mpo created during the METAPOST runs will be
deleted. Also the .mp files will be deleted with clean=mp; this option will erase
also the .mps files when X ELATEX is used.

4Actually it can be in \gmpoptions, but there it has no effect.

13

Some strange files will remain, particularly when there’s some error during
one of the METAPOST runs; this is why I chose not to delete them. It’s best to
use clean=none, which is the default, at the beginning, changing to clean=aux
when everything seems to be alright and clean=mp for the last check before setting
nowrite.

In case you are worried about what files will be deleted, run with the
noshellescape options and have a look at the shell script that’s created: it
will show at its end the remove commands that will be run. Or just don’t set
anything, so that clean=none will be in force.

rmcommand

The default command for cleaning the directory is rm -f. Of course this is system
dependent and those on WindowsTM systems might want to set rmcommand=del.

postrmcommand

The value of the key postrmcommand is usually empty; you can obtain a ‘safe
removing’ by setting something like

\gmpoptions{rmcommand=mv,postrmcommand=junk}

This will be translated into commands such as

mv filename+mp*.log junk

so if you have a subdirectory called junk all the auxiliary files will be moved into
it, instead of being deleted.

5 Commands

\gmpoptions{〈options〉}
All package options can be given either as an optional argument to \usepackage
or as an argument to \gmpoptions. This command can be given multiple times,
with cumulative effect, but only in the preamble. However the envname option has
no effect here.

\usempxclass [〈options〉] {〈class〉}
This has the same syntax as \documentclass. Its purpose is to declare the class
used for the runs of TEX or LATEX for preparing the mpx files which METAPOST

needs to draw the text labels. It should be not necessary to change it from the
default (which is article). But if you are using a non standard class with a non
standard type size (i.e., not 10, 11 or 12 point size), then you will need to declare
a class, otherwise your labels will be typeset in 10 point type. Of course this has
no effect for METAPOST objects where the TEX format to be used is Plain TEX.

14

\usempxpackage [〈options〉] {〈package(s)〉}
Same syntax as \usepackage. It can be given multiple times and its effects are
cumulative. Thus, if your main text font is Palatino, you have to give

\usepackage{palatino}
\usempxpackage{palatino}

I chose not to modify the standard \usepackage command because some packages
make no sense inside METAPOST objects and it would be useless and time con-
suming to load them. Just think to the pgf package, for example: while a user may
very well employ this one alongside with gmp, it would be very questionable to
load pgf during a LATEX run to compile a METAPOST graphic object, albeit not
forbidden.

If your labels in METAPOST pictures use special characters (the accented ones,
for instance), you must load the inputenc package with the same option as your
main file:

...
\usepackage[latin1]{inputenc}
...
\usepackage{gmp}
\gmpoptions{...}
\usempxpackage[latin1]{inputenc}
...

You can use any encoding with (pdf)LATEX; set the utf8 or utf8x option when
your main document is typeset with X ELATEX.

Both \usempxpackage and \usempxclass respect the usual scoping rules, so
you can modify the class or the packages used for a particular METAPOST object
by enclosing the commands in a group, for example in an environment such as
figure. But no, not in the mpost environment itself, sorry.

\resetmpxpackages

This command resets to empty the list of packages to be loaded, obeying to the
normal scoping rules.

\mpxcommands{〈commands〉}
With this command you can add LATEX commands to be executed for every run of
METAPOST, when typesetting labels; for instance, your favorite definitions. Also
the effect of this command is cumulative. Pay attention that this works only if
the program used for compiling the mpost figures is LATEX. Like the commands for
choosing the class and the packages, this one obeys the scoping rules.

\resetmpxcommands

This command resets the list of commands to empty, obeying to the normal scoping
rules.

15

\mpdim{〈dimen parameter〉}
This command takes as argument a length, i.e., a LATEX parameter or a command
defined by \newlength or operations on lengths. Its output is the length in points;
if the length is a rubber one, the ‘plus’ and ‘minus’ parts are ignored. You can even
use as argument an explicit length such as ‘2cm’, although this would be overkill.
However, you can give as argument some calculation with \dimexpr syntax, such
as

\mpdim{2ex+\baselineskip}
\mpdim{3em-1pt}

which might be useful, because the ex and em units change with the current font
size. Don’t add \relax, it’s automatically provided.

TEXnical note. The command \mpdim works without making assignments, so that it is fully
expandable at the moment of the \write to the METAPOST external file. It uses internally \the
and \dimexpr. When the \write takes place, the command is expanded and the output is

begingroup 〈thedimen〉 endgroup

where 〈thedimen〉 is the value of the 〈dimen〉 given as argument. Therefore the construction
\mpdim{〈dimen〉} behaves like a number as far as METAPOST is concerned; for Metapost,
dimensions are simply numbers and the units are just multipliers.

\usempost

This command takes as its argument a string already assigned as a name to a
METAPOST object. Its effect is to place the graphic object where the command
appears. The complete syntax is

\usempost[〈options〉]{〈string〉}

where 〈string〉 is the name of an already introduced and named METAPOST object
and 〈options〉 are any options that make sense for the \includegraphics command
provided by the graphicx package.

6 Environments
The package provides two environments, whose default names are mpost and
mpost*. The name, however, can be changed in the package options, as we have
already seen. In the descriptions below I’ll use the default name.

Commands in the body of the mpost environment are interpreted and expanded
and this is the main feature offered by this package.

The main difference between mpost and mpost* is that in the second one there
is no expansion at all: every METAPOST statement in the environment’s body is
written out as it is for subsequent processing. Therefore mpost* behaves like emp
or mpgraphics of the respective packages, but the difference is that it can go in the
argument to a command. This behavior costs us something: LATEX environments in
METAPOST labels must be enclosed in a pair of braces in the same btex...etex
construction. So don’t say

16

btex ... $\begin{array}{c}a\\b\end{array}$... etex

but rather

btex ... {$\begin{array}{c}a\\b\end{array}$} ... etex

See later on for details. The same holds for the mpost environment, with one more
little catch, see page 21.

There is no \inputmpost command: if you really need it, just define

\newcommand{\inputmpost}[2][1]{\begin{mpost}[#1]input #2;\end{mpost}}

The METAPOST file you input this way should contain just statements that would
go in a normal mpost environment.

7 Options to the environments
Actually, the name of the two environments provided by this package can be chosen
by the user on a per document basis with the package option envname. I will use
the default name in the description. The syntax is

\begin{mpost}[〈options〉]
〈METAPOST statements〉
\end{mpost}

\begin{mpost*}[〈options〉]
〈METAPOST statements〉
\end{mpost*}

The 〈options〉 are in the form 〈key〉=〈value〉. They influence only the current
environment and are the same for the two varieties (mpost and mpost*).

name

With name=〈string〉 you assign the object a name for subsequent multiple use with
\usempost{〈string〉}. For example, if the object is some symbol to be employed
many times, you can say

\begin{mpost}[name=mysymbol]
...
\end{mpost}
\newcommand{\mynicesymbol}{%

\usempost[height=.7\ht\strutbox]{mysymbol}}

In this case you cannot pass arguments to the mpost environment: the object is
frozen apart from modifications with the optional argument to \usempost. In this
case the symbol we have built with METAPOST will change size according to the
current font size, but only by scaling.

17

The 〈string〉 used as a name should consist only of ASCII printable characters;
no accented letters, please, just like for LATEX labels (those for \label). If you
specify this key, then the object will not appear unless you specify also use, see
below. The proper place for named environments is usually the preamble.

Suppose you have to write the symbol for a square wave in different sizes; instead of using
only one mps graphic file and scaling it you may want to define a couple of them. Say, for instance,
that you need it also in section titles, which are typeset in \Large size and bold face and that
the symbol’s height is the same as a lowercase letter. You can get the two versions which are
automatically chosen among with the following code:

\makeatletter
\newcommand{\sqwave}{\usempost{sqwave\f@size\f@series}}
\newcommand{\sqwavebody}{%

u:=\mpdim{1ex};
pickup pencircle scaled \mpdim{.05em};
draw (0,0)--(2/3u,0)--(2/3u,u)--(u,u)--(u,0)--(5/3u,0);}

{\normalsize
\begin{mpost}[name=sqwave\f@size\f@series]\sqwavebody\end{mpost}
}
{\Large\bfseries
\begin{mpost}[name=sqwave\f@size\f@series]\sqwavebody\end{mpost}
}
\makeatother

Then simply say \sqwave when you need the symbol. If you change the type size of your document,
you’ll get the proper symbol’s height. If it turns out that you need the symbol also in other
contexts, just add other mpost named environments along the same lines.

We pass the mpost environment two dimensions that depends on the context: the symbol’s
height will be the x-height of the current font, the pen’s width will scale according to the em size,
which is bigger for bold face fonts. The picture will be chosen according to the current value of
\f@size (the current type size) and \f@series, which contains the font series indicator (‘m’ for
medium fonts and ‘bx’ for bold face fonts, usually). The auxiliary macro \sqwavebody contains
the body of the mpost environment, so there’s even no need to copy it many times.

use

This is a boolean option, the default is true unless the name option is present.
When it is set to true, the object is inserted in the place where the environment
appears. In order to set it to true, it is sufficient to say use instead of use=true.

mpmem

You can choose a different format for METAPOST compilation instead of the default
Plain. For example you can use Hans Hagen’s Metafun package by passing the
option

mpmem=metafun

18

mpxprogram

With this option, you can override the global option chosen when gmp was
loaded, or with \gmpoptions; with mpxprogram=tex you invoke Plain TEX, with
mpxprogram=latex you invoke LATEX with the preamble defined by default or in
the options to gmp. There are presently no other choices. Use mpxprogram=latex
(or set the package option latex) whenever you have METAPOST labels.

mpxcommands

You can pass some commands to be executed when compiling METAPOST with
LATEX with mpxcommands=〈commands〉. For instance, you can say

mpxcommands={\newcommand{\C}{\mathbf{C}}}

if your labels contain a \C command for typesetting the set of complex numbers in
bold face type or some other useful commands. You may also say

mpxcommands={\input{mymacros}}

and put all needed definitions inside mymacros.tex. Remember that inside
\btex...etex constructions (see Section 8), METAPOST does not know any of
your personal commands, since the typesetting is made during a distinct run of
LATEX. The LATEX commands are not interpreted during the write to the auxiliary
file, they will be during METAPOST compilation.

mpsettings

The value for this key is a list of METAPOST statements to be executed before
beginfig, usually for inputting METAPOST packages. For example, if a META-
POST object is drawn with the boxes package, then it is necessary to say

mpsettings={input boxes;}

because this package must be loaded before saying beginfig. Of course such
a statement can be included also with the everymp global key. Don’t forget
the trailing semicolon. LATEX commands are interpreted just as in the mpost
environment, so it’s possible to use, for example, \mpdim.

runs

The drv package for METAPOST requires each source file to be run twice; in this
case set the option runs=2. For this specific package it’s necessary to use also the
latex option and also, of course, mpsettings=input drv; in order to load the
METAPOST package. The default value is 1.

19

8 The body of the mpost and mpost* environments
The body of the mpost and mpost* environments consists of METAPOST statements
with the exception of beginfig(〈number〉);, endfig; and end5.

The METAPOST input that will be processed consists of

〈TEX preamble〉
〈METAPOST preamble〉
beginfig(〈number〉);
〈body of the environment〉
endfig;end
〈TEX postamble〉

The 〈body of the environment〉 is precisely the contents of the mpost environment
you supply. The 〈number〉 is assigned automatically and is actually irrelevant.

The 〈TEX preamble〉 is empty if the compiler for the mpx files is TEX; it is the
LATEX preamble formed as seen before in case the compiler is LATEX. In the latter
case, the 〈TEX postamble〉 is just
verbatimtex \end{document} etex

otherwise it is empty (the METAPOST interpreter knows to add \end at the end of
its produced mpx file, if necessary). Of course the 〈TEX preamble〉 is complemented
by the declarations you supply with the previously described commands. Similarly,
the 〈METAPOST preamble〉 is usually almost empty, but you may add something
with the methods described earlier; actually the only statement always added to
the preamble is

outputtemplate:= "%j.mps";

in order to give the resulting file a suitable name for automatic inclusion in the
LATEX document. Don’t issue such a statement yourself.

In the 〈body of the environment〉 you can put TEX or LATEX commands as usual
for METAPOST code inside btex 〈TEX material〉 etex; in a mpost environment,
however, LATEX commands may be embedded in the normal METAPOST statements,
we’ll call them naked.

Naked TEX commands in the body of mpost

The naked commands will be expanded in the normal way, it’s up to you to ensure
that their expansion is valid METAPOST code. Don’t use dimension parameters by
themselves: for example, the command \linewidth is unexpandable, so METAPOST

will interpret it as the variable linewidth, which probably would be unknown.
Suppose you want that your METAPOST graphic objects have a uniform aspect

throughout the document, but you haven’t decided yet what will be the final
background color for a series of pictures. All you need is to use something like

fill p withrgbcolor \backgroundcolor;

5Actually, you can put such statements; but don’t blame me if your computer starts choking
or insulting you.

20

and to give in the document’s preamble a definition such as

\newcommand*{\backgroundcolor}{(.124,.048,.129)}

and your backgrounds will be the same in all the pictures. Of course there are
other methods to get this result: one might say also

\gmpoptions{everymp={rgbcolor mybgcolor;
mybgcolor:=(.124,.048,.129)}}

or write a definition file to be read via everymp; but I believe that the naked
command method is preferable from the point of view of a LATEX user: it requires
less maintenance and is more direct.

In order to pass length parameters to METAPOST, the \mpdim command is
useful. If you know that the parameter is a fixed length (such as \linewidth),
you can use also \the before the name of the length parameter. Beware however
that most parameters in LATEX are defined through \newlength and so they are
rubber length, possibly having ‘plus’ or ‘minus’ components which would confuse
METAPOST. Using \mpdim is safer. Moreover, \mpdim accepts its argument in the
usual braced form.

Pay attention that the expansion of \mpdim is not only the length in points,
but something more complicated. Don’t use it outside mpost environments.

Any command whose expansion is just a string of characters can be used naked
in a mpost environment; METAPOST will see the string of letters and it’s under
your responsibility that this string is meaningful in the context it’s found. For
example, after

\newcommand{\xxx}[1]{#1cm}

has been given in the LATEX root file, \xxx{2} can be written in a mpost environ-
ment, where METAPOST expects a numeric value; for instance,

a:=\xxx{2};

would set the variable ‘a’ to the value ‘56.6929’, which are indeed two centimeters,
since METAPOST works internally in ‘big points’. Pay attention that

a:=2\xxx{2};

would set the variable ‘a’ to the value ‘623.62192’ which corresponds to 22 cen-
timeters and not to ‘113.3858’ (i.e., 4 centimeters). The correct way to set ‘a’ to
4 centimeters would be a:=2*\xxx{2};.

Commands inside [verbatim|btex]...etex

This is an important point where the METAPOST input in a mpost environment
deviates slightly from the normal one. Suppose that you have to write a label
inside METAPOST in the form

btex \textit{label} etex

21

because you want it in italics. We have a problem here, because the command
\textit passes through a \write, so that it is expanded to something that is not
what the METAPOST interpreter likes to see; precisely, the expansion might be
something like

\protect \relax \protect \edef n{it}\protect\xdef
\OT1/cmr/m/n/10 {\OT1/cmr/m/n/10 }\OT1/cmr/m/n/10
\size@update \enc@update

(all on one line). This will confuse the postprocessors that typeset the labels (that
currently are integrated into METAPOST), either if we are using LATEX or, even
worse, Plain TEX.

The solution is to write \verbatimtex and \btex instead of verbatimtex and
btex. The leading backslash would be legal also in standard METAPOST, anyway.
Everything inside

\verbatimtex ... etex
\btex ... etex

is passed as is to the compiler for producing the mpx files needed by METAPOST.
So the correct way to pass the label is

\btex \textit{label} etex

when post-processing with LATEX and

\btex \it label etex

when post-processing with Plain TEX. Though using btex without a backslash
has its uses, remember that eight bit characters must go inside \btex...etex or
protected by \unexpanded (unless you’re using X ELATEX). So, never say

btex Cuvéé 1982 etex

but choose among the following alternatives:

\btex Cuvéé 1982 etex
btex \unexpanded{Cuvéé} 1982 etex
btex Cuv\unexpanded{éé} 1982 etex

TEXnical note. When I started developing this package, the choice to write verbatim the
METAPOST input was ruled out almost immediately, since I wanted to pass parameters from
LATEX to METAPOST. The verbatim method is used by emp, which makes available only
two parameters given as arguments to the emp environment; for example \begin{emp}(23,45)
puts at the user’s disposal the two METAPOST variables ‘w’ and ‘h’ with values 23 times and
45 times the usual LATEX parameter \unitlength. Passing to METAPOST the \linewidth is
pretty complicated, since it requires to divide the \linewidth by the unit length. Moreover, only
two parameters are too few.

Therefore I chose to write the METAPOST files expanding commands. This works since
METAPOST instructions have no backslashes in them and the command \mpdim used for passing
parameters from the current document is especially tailored in order that its expansion is accepted
by METAPOST. With the obvious exception of things inside btex...etex. The solution exploits
the \unexpanded command made available by the modern TEX engines.

The construction \btex...etex is equivalent to write

btex \unexpanded{...} etex

22

Figure 6 An example from Alan Hoenig’s book
\begin{mpost}[mpxprogram=latex,mpsettings={input boxes;}]
u:=1pc; path p[]; p0=(-6u,0) -- (6u,0);
p1=(0,-4u)--(0,4u);
p2=(0,-4.5u)--(0,4.5u); p2:=p2 rotated -45;
circleit mech(\btex
{\fontsize{8}{10}\selectfont
$\begin{array}{c}
\sigma_{ij,j}=0\\
\sigma_{ij}=c_{ijk\ell}\epsilon_{k\ell}\\
\epsilon_{ij}=\frac{1}{2}(u_{i,j}+u_{j,i})
\end{array}$}
etex);
mech.dx=mech.dy; mech.c=origin;
pickup pencircle scaled 1pt;
draw p0; draw p1; draw p2; draw p2 rotated 90;
pickup pencircle scaled u; unfilldraw bpath.mech;
pickup pencircle scaled 1pt; drawboxed(mech);
\end{mpost}

σij,j = 0

σij = cijk`εk`
εij = 1

2
(ui,j + uj,i)

and what is written to the METAPOST file is precisely

btex ... etex

with no expansion of commands.

There is another catch: for TEXnical reasons, environments in \btex...etex
parts cannot be used without protection. This is because the METAPOST input
is gathered as an argument delimited by \end. The solution is to put the inner
environments inside braces. An example, taken from Hoenig [2, p. 416], is found in
figure 6, where the input is just like Hoenig’s except for a minor correction (3.5u
in the original should be 4.5u) and having put everything inside \btex...etex in
braces (and writing \btex instead of btex, of course).

Another way to cope with this would be to write simply \array instead of
\begin{array} and \endarray instead of \end{array}, which is how the mpost
environment for this example has actually been written.

23

9 Definitions using the mpost environment
Some examples have already been presented, but it’s best to underline again that the
environment can go inside the replacement text of a definition; don’t use \mpost and
\endmpost, though, just \begin{mpost} and \end{mpost}. Commands defined
this way are fragile: don’t use them in moving arguments. As an example, we can
use a variation on a drawing from [2]:

\newcommand{\squares}[2][black]{%
\begin{mpost}
boolean timetofillbox;
sfactor:=.95;
path p,q; u:=\mpdim{#2\textwidth}/2;
p := (u,u) -- (-u,u) -- (-u,-u) -- (u,-u) -- cycle;
theta := 0; dtheta := .005;
forever:

theta := theta+dtheta;
q := p scaled sfactor rotated theta;
exitif ypart(point 0 of q) > u;

endfor;
fill p withrgbcolor #1; timetofillbox:=false;
for i:=1 upto 51:

p := p scaled sfactor rotated theta;
if timetofillbox:

fill p withrgbcolor #1; timetofillbox:=false;
else:

fill p withrgbcolor white-#1; timetofillbox:=true;
fi

endfor
\end{mpost}}

The optional argument is an rgb color, either with a predefined name such as
black (default) or a triple such as (.165,.325,.553); the second argument is the
size of the square, expressed as a fraction of \textwidth, for example 0.8. In
figure 7 you get three variations input as

\begin{minipage}{\textwidth}
\centering\offinterlineskip
\squares{.4}\squares[(.165,.325,.553)]{.4}\\
\squares[(.835,.685,.447)]{.8}
\end{minipage}

that also show how gmp uses the hi-res bounding box provided by METAPOST.

10 The mpost* environment
No command in the body of the mpost* environment will be interpreted in any
special way, so don’t use them except than encapsulated into btex...etex. Here
there’s no need to write \btex, but it doesn’t hurt either. It’s however necessary

24

Figure 7 Squares taken from Hoenig’s book

25

to hide inside braces the LATEX command \end like for the sibling environment
mpost. It’s possible to pass variables to the picture from the LATEX context by
exploiting the option mpsettings: for example, with a prologue such as

\begin{mpost*}[mpsettings{u:=\mpdim{\unitlength}}]

you’ll be able to use in the METAPOST code the variable u which will be set to
the current \unitlength (don’t say save u; in the METAPOST code, of course).

The mpost* environment can go inside the argument to a command.

11 X ELATEX and gmp
The present package is compatible with X ELATEX; in this case it performs also a
conversion to pdf of the mps file for inclusion. There are some limitations, though:
it’s impossible to typeset labels to pictures with system fonts, as it would be in the
main document. Indeed METAPOST can’t use X ETEX for typesetting the labels,
only LATEX; this limitation is in METAPOST, we hope that in the future it will be
removed. If your main font is Linux Libertine, for instance, you can typeset labels
by saying

\usempxpackage[utf8]{inputenc}
\usempxpackage{libertine}

(possibly passing some option to the latter package). Many fonts that you can
use with X ELATEX can also be used in LATEX, of course without access to the full
character set.

12 Examples
Let’s try some weird input with foreign characters.

\usepackage[latin1]{inputenc}
...
\usempxpackage[latin1]{inputenc}
...
\begin{center}
\begin{mpost}[mpxprogram=latex]
label(\btex àèü etex, origin);
draw fullcircle xscaled 1.5cm yscaled 2\mpdim\baselineskip;
\end{mpost}
\end{center}

àèü

Always use the same option to inputenc as your main file or, if you are working
with X ELATEX,

\usempxpackage[utf8]{inputenc}

26

in your document’s preamble. Also utf8x is acceptable, of course, in this case.
Let’s see instead a case where expansion in a btex...etex construction is

needed: we want to enclose numbers, colored in white, inside an elliptical gray
background. The vertical axis of the ellipse should be as high as the baseline skip
and it should be a circle if the number has only one digit; the additional problem is
that the number can be given as the representation of some counter (for example
enumi, a possible application is evident).

\newcounter{mycount}
\newlength{\mylen}
\newcommand{\circleit}[2][]{\settowidth{\mylen}{#2}%

\begin{mpost}[mpxprogram=latex]
fill fullcircle

xscaled max(\mpdim{\mylen+6pt},\mpdim{\baselineskip})
yscaled \mpdim{\baselineskip}
withcolor .4white;

draw thelabel(btex \unexpanded{#1}#2 etex, origin)
withcolor white;

\end{mpost}}

\circleit{\themycount}\quad
\setcounter{mycount}{3}\circleit{\themycount}\quad
\setcounter{mycount}{12}\circleit{\themycount}\quad
\renewcommand{\themycount}{\roman{mycount}}%
\circleit{\themycount}\quad
\circleit{44}\quad
\renewcommand{\themycount}{\arabic{mycount}}%
\circleit[\sffamily]{\themycount}

0 3 12 xii 44 12

In this case we want that what is inside btex...etex is expanded, in case it is
\themycount. Of course we have to be sure that the expansion of the command
consists only of characters. So, for example,

\renewcommand{\themycount}{\textsf{\arabic{mycount}}}

would not work for the last example. This is the reason for having defined an
optional argument to \circleit. The trick of using this argument in \unexpanded
keeps every program happy and the label is typeset correctly. More fun for the
TEXackers!

13 Conversion from emp
It’s quite easy to convert old files that use emp without changing too much; a
typical emp environment is

\begin{emp}[xyz](15,30)
...;
\end{emp}

27

where the dots stand for METAPOST statements and xyz is the name for subsequent
use. This may be transformed into

\begin{mpost}[name=xyz,use]
w:=\mpdim{15\unitlength};
h:=\mpdim{30\unitlength};
...;
\end{mpost}

An empgraph environment such as

\begin{empgraph}[xyz](15,30)
...;
\end{empgraph}

must be transformed into

\begin{mpost}[name=xyz,use](15,30)
w:=\mpdim{15\unitlength};
h:=\mpdim{30\unitlength};
draw begingraph(w,h);
...;
endgraph;
\end{mpost}

Remember to change all btex into \btex and the auxiliary commands into the
similar ones of gmp: it should be almost straightforward. If people ask for it, I
might add a compatibility layer for emp.

Alternatively, the first case might be treated as

\begin{mpost*}[name=xyz,
mpsettings={w:=\mpdim{15\unitlength};

h:=\mpdim{30\unitlength};}]
...;
\end{mpost*}

You might prefer this strategy if you have many btex...etex pairs. Look out for
\end commands, though: if not properly braced, they will confuse the processing
of the environment’s content.

14 Implementation
Before doing anything, we check that the engine knows about \unexpanded and
\dimexpr; otherwise we say good-bye.
1 \@ifundefined{eTeXversion}{%
2 \PackageError{gmp}{This package requires a e-TeX extensions}
3 {The gmp package requires a modern TeX engine, please upgrade}%
4 \endinput}{}

28

We need xkeyval for its key-value interface. Then we define some conditional for
later usage and the package options.
5 \RequirePackage{xkeyval}[2005/01/30]
6
7 \newif\ifgmp@latex % true if always using latex for mpx
8 \newif\ifgmp@locallatex % true if using latex for mpx for a
9 % single figure

10
11 \newif\ifgmp@nogen % true if we are not generating the mps files
12 \newif\ifgmp@nowrite % true if we are not writing the mp files
13 \newif\ifgmp@warn % true if we are issuing the final message
14
15 \DeclareOptionX<ggmp>{tex}{\def\gmp@mpxprogram{tex}%
16 \gmp@latexfalse\gmp@locallatexfalse}
17 \DeclareOptionX<ggmp>{latex}{\def\gmp@mpxprogram{latex}%
18 \gmp@latextrue\gmp@locallatextrue}
19
20 \DeclareOptionX<ggmp>{noshellescape}{\gmp@nogentrue}
21 \DeclareOptionX<ggmp>{shellescape}{\gmp@nogenfalse}
22
23 \DeclareOptionX<ggmp>{nowrite}{\gmp@nowritetrue}
24 \DeclareOptionX<ggmp>{write}{\gmp@nowritefalse}
25
26 \DeclareOptionX<ggmp>{envname}{\def\gmp@envname{#1}}
27 \DeclareOptionX<ggmp>{extension}{\def\gmp@ext{#1}}
28
29 \def\gmp@preoptions{}
30 \DeclareOptionX<ggmp>{everymp}{\edef\gmp@preoptions{\gmp@preoptions^^J#1}}
31
32 \DeclareOptionX<ggmp>{clean}{\def\gmp@clean{#1}}
33
34 \DeclareOptionX<ggmp>{rmcommand}{\def\gmp@remove{#1}}
35 \DeclareOptionX<ggmp>{postrmcommand}{\def\gmp@postremove{#1}}
36
37 \def\gmp@jobname{\jobname}

Now we set the default options: the mpx program is TEX; we write out the
auxiliary files and do not assume shell-escape; no cleaning after compilation of
the METAPOST files; default environment names are mpost and mpost*; default
mp-extension is +mp. Then we read the package options.
38 \ExecuteOptionsX<ggmp>{tex,noshellescape,write,clean=none}
39 \ExecuteOptionsX<ggmp>{envname=mpost,extension=+mp,
40 rmcommand=rm -f,postrmcommand={}}
41 \ProcessOptionsX<ggmp>\relax

We need some auxiliary packages, they’ll probably be loaded anyway, with the
exception of environ that’s employed for the mpost* environment, but has no known
incompatibility.
42 \RequirePackage{graphicx}
43 \RequirePackage{ifpdf}

29

44 \RequirePackage{ifxetex}
45 \RequirePackage{environ}

With X ELATEX we need to run epstopdf; we don’t support LuaLATEX, because looking
at shell-escape is useless, at the moment, even via Heiko Oberdiek’s pdftexcmds (at
least for the time being).
46 \ifxetex
47 \let\gmp@shellescape\shellescape
48 \def\gmp@preoptions{prologues:=3;^^J}
49 \else
50 \ifdefined\pdfshellescape % (pdf)latex
51 \let\gmp@shellescape\pdfshellescape
52 \else % lualatex
53 \chardef\gmp@shellescape=\z@
54 \gmp@nogentrue
55 \fi
56 \fi

We define some warning messages; in some cases the message enables or disables
other messages.
57 \def\gmp@msgdisallowed{\PackageWarningNoLine{gmp}{Compilation and
58 writing of MetaPost files has been\MessageBreak disallowed by the
59 ‘nowrite’ option}\gdef\gmp@nemessage{}}
60 \def\gmp@msgnonexistent{\PackageWarning{gmp}{Non existent MetaPost
61 file requested}\ifgmp@warn\else\global\gmp@warntrue\fi}
62 \def\gmp@msgrequestx{\PackageWarningNoLine{gmp}{The MetaPost file you
63 requested does not exist,\MessageBreak perhaps by a compilation
64 error}}
65 \def\gmp@msgremember{\PackageWarningNoLine{gmp}{Remember to run ‘sh
66 \gmp@jobname\gmp@ext.sh’ and rerun (pdf)LaTeX}}

The following lines are to avoid spurious messages, opening and writing of files if
the user has not activated the shell escape feature but has given the shell-escape
option.
67 \def\gmp@msgensure{%
68 \PackageWarningNoLine{gmp}{Ensure that you have enabled the shell
69 escape feature, or\MessageBreak you can be in trouble. The
70 available MetaPost generated\MessageBreak files will be used
71 anyway. Use option ‘nowrite’ if they\MessageBreak are already
72 in final form}%
73 \let\gmp@message\@gobble
74 \let\gmp@writexviii\@gobble
75 \def\gmp@openout##1##2\@nil{}%
76 \let\gmp@write\@gobbletwo
77 \let\gmp@closeout\@gobble}

Now we define some abbreviations for primitive actions, so that we are able to
change their meaning at will.
78 \let\gmp@message\message
79 \def\gmp@writexviii{\immediate\write18 }
80 \def\gmp@openout#1#2\@nil{\immediate\openout#1#2}

30

81 \def\gmp@write{\immediate\write}
82 \def\gmp@closeout{\immediate\closeout}

\gmp@command Here we define the main internal macro, \gmp@command, which has different defi-
nitions depending on the package options. If the nowrite option is valid, there’s
even no need for it; otherwise it must behave differently: if we are doing immediate
compilation via shell-escape it must act by emitting \gmp@writexviii, otherwise
it must write the command in the batch file to be run after the LATEX run. In the
latter case we also open an output stream and write a prologue on it.
83 \def\gmp@setupmacros{%
84 \ifgmp@nowrite
85 \let\gmp@nemessage\gmp@msgdisallowed
86 \else
87 \ifgmp@nogen
88 \let\gmp@nemessage\gmp@msgnonexistent
89 \def\gmp@command{%
90 mpost \ifx\gmp@mpmem\empty\else\space\gmp@mpmem\space\fi}%
91 \newwrite\gmp@shellout
92 \immediate\openout\gmp@shellout=\gmp@jobname\gmp@ext.sh%
93 \immediate\write\gmp@shellout{\string##!/bin/sh}%
94 \def\gmp@shellcommand##1{\immediate\write\gmp@shellout{##1}}%
95 \AtEndDocument{\ifgmp@warn\gmp@msgremember\gmp@warnfalse\fi}%
96 \else
97 \let\gmp@nemessage\gmp@msgrequestx
98 \ifnum\gmp@shellescape=\@ne
99 \def\gmp@command{%

100 mpost -interaction=nonstopmode %
101 \ifx\gmp@mpmem\empty\else\space\gmp@mpmem\space\fi}%
102 \def\gmp@shellcommand##1{%
103 \gmp@message{^^J(gmp) Doing external command^^J(gmp) \string"}%
104 \gmp@writexviii{echo ##1’\string"’}\gmp@writexviii{##1}%
105 }%
106 \else
107 \gmp@msgensure\let\gmp@shellcommand\@gobble
108 \fi
109 \fi
110 \fi
111 }
112 \gmp@setupmacros

\gmpoptions Next we define \gmpoptions which can be used to set package options in a more
friendly way. However we disallow it outside the preamble, because otherwise the
status of the macros would not be predictable.

113 \def\gmpoptions#1{\setkeys{ggmp}{#1}\gmp@setupmacros}
114 \@onlypreamble\gmpoptions

We next define a standard LATEX preamble for mpx.
115 \def\gmp@latexpreamble{%^^J%
116 \gmp@percent\string&latex^^J%

31

117 \string\documentclass[1\@ptsize pt]{article}^^J%
118 \ifx\empty\gmp@packages\else\the\gmp@packages^^J\fi%
119 \ifx\empty\gmp@commands\else\the\gmp@commands^^J\fi%
120 \string\begin{document}^^J}

\usempxclass
\usempxpackage

If one wants a non standard LATEX class, the command \usempxclass, with the
same syntax as \documentclass, is provided. Similarly for \usempxpackage;
\resetmpxpackages clears out the loading of packages.

121 \newcommand\usempxclass[2][]{%
122 \def\gmp@latexpreamble{^^J%
123 \gmp@percent\string&latex^^J%
124 \string\documentclass[#1]{#2}^^J%
125 \ifx\empty\gmp@packages\else\the\gmp@packages^^J\fi%
126 \ifx\empty\gmp@commands\else\the\gmp@commands^^J\fi%
127 \string\begin{document}^^J}}
128 \newtoks\gmp@packages
129 \newcommand\usempxpackage[2][]{%
130 \gmp@packages=\expandafter{\the\gmp@packages^^J%
131 \usepackage[#1]{#2}}}
132 \newcommand\resetmpxpackages{\gmp@packages={}}

\mpxcommands With \mpxcommands one can insert definitions to be used for METAPOST la-
bel composition: these are seen only if LATEX is used for mpx. There’s also
\resetmpxcommands in case of need.

133 \newtoks\gmp@commands
134 \newcommand\mpxcommands[1]{%
135 \gmp@commands=\expandafter{\the\gmp@commands^^J%
136 #1}}
137 \newcommand\resetmpxcommands{\gmp@commands={}}

\mpdim The \mpdim macro is used in the mpost environment or in the value of the key
mpsettings for passing length depending on current conditions. We exploit
\dimexpr that strips out possible ‘elastic’ components and allows for doing calcu-
lations. The result is written out surrounded by begingroup and endgroup that
make the number obtained look like a variable at METAPOST’s eyes.

138 \def\mpdim#1{ begingroup \the\dimexpr#1\relax\space endgroup }

Now we start the hard task of writing out the auxiliary files. So we define an
output stream and a counter that keeps track of the figure names; in order to know
the total number of the pictures, at end-of-document we define an internal label
which is currently unused, though.

139 \newwrite\gmp@out
140 \newcounter{gmp@count}
141 \AtEndDocument{%
142 \refstepcounter{gmp@count}%
143 \label{gmp@finallabel}%
144 }

32

mpost The mpost environment (but the name can be set at package loading) must read
the ‘local options’ given as an optional argument as the usual list of key-value
statements. First of all it must step the METAPOST figure counter and set a label
for it for subsequent calling of the graphics, then we grab the option given to the
environment.

145 \newenvironment{\gmp@envname}[1][]
146 {\@bsphack
147 \global\gmp@usefalse
148 \refstepcounter{gmp@count}\label{gmp@label@\thegmp@count}%
149 \bgroup
150 \edef\gmp@number{\thegmp@count}%
151 \gmp@grab{#1}}
152 {\@esphack}

mpost* The mpost* environment writes out its contents without TEX macro expansion;
we simply use mpost: so we gather the optional argument into a scratch token
register, collect the body of the environment and pass it to the \gmp@writeunex
macro which calls \begin{mpost} (possibly with the name chosen by the user),
to which are passed the options. The first \unexpanded is removed by \edef, the
second one by the writing process.

153 \def\gmp@writeunex#1{\begingroup
154 \edef\x{\endgroup\noexpand\begin{\gmp@envname}[\the\toks@]%
155 \unexpanded{\unexpanded{#1}}\noexpand\end{\gmp@envname}}\x}
156 \newenvironment{\gmp@envname*}[1][]
157 {\toks@{#1}\Collect@Body\gmp@writeunex}{}

Here we define the key-value interface for the options to the environments, with
some auxiliary macros and conditionals; \gmp@fourdigits is used for the output
file names, we think that more than 9999 pictures are difficult to be present for a
single file; but this will not limit at all the user’s possibilities.

158 \def\gmp@fourdigits#1{%
159 \ifnum#1<10 0\fi
160 \ifnum#1<100 0\fi
161 \ifnum#1<1000 0\fi\number #1}
162 \def\gmp@not@a@name@{@not@a@name@}
163 \def\gmp@choosetex{\gmp@locallatexfalse}
164 \def\gmp@chooselatex{\gmp@locallatextrue}
165 \def\gmp@doiflatex#1{\ifgmp@latex#1\else\ifgmp@locallatex#1\fi\fi}
166 \def\gmp@mpmem{}
167 \newif\ifgmp@use
168 \define@key{gmp}{name}[@not@a@name@]{%
169 \def\gmp@thisname{#1}%
170 \expandafter\xdef\csname gmp@fig#1\endcsname
171 {\gmp@fourdigits{\gmp@number}}}
172 \define@key{gmp}{use}[true]{\global\csname gmp@use#1\endcsname}
173 \define@key{gmp}{mpmem}{\def\gmp@mpmem{-mem #1}}
174 \define@key{gmp}{mpsettings}{\edef\gmp@preoptions{\gmp@preoptions^^J#1}}
175 \define@key{gmp}{mpxcommands}{%

33

176 \gmp@commands=\expandafter{\the\gmp@commands^^J#1}}
177 \define@key{gmp}{mpxprogram}{%
178 \def\gmp@mpxprogram{#1}%
179 \csname gmp@choose#1\endcsname}
180 \define@key{gmp}{runs}{\chardef\gmp@runs=#1\relax}

\gmp@grab The \gmp@grab macro sets the value of the keys; the name must be initially empty
and the number of runs should be 1. The conditional \if@gmpuse is set to false at
the beginning of the environment, and to true when use is given or when there’s
no name. Finally the macro calls \gmp@innermpost.

181 \def\gmp@grab#1{%
182 \setkeys{gmp}{name}%
183 \setkeys{gmp}{runs=1}%
184 \setkeys{gmp}{#1}%
185 \ifx\gmp@thisname\gmp@not@a@name@
186 \global\gmp@usetrue
187 \fi
188 \gmp@setup\gmp@innermpost}

Before defining the macro responsible for the task of writing out the METAPOST

files, we do some housekeeping.
We ensure that the character we need are written correctly in the META-

POST files; so we define a ‘printing’ percent sign and change the category code of
characters that might be made active by babel or other packages. The semicolon
is made active: it will output a semicolon followed by a new line character; in
the environment \par means ‘go to a new line’, so that empty lines in a mpost
environment will cause a new line in the output file. However this doesn’t work
currently for mpost environments given as arguments to other commands; since
the normal buffer size is around 50 000, this should not be a problem.

189 \begingroup\@makeother\%\def\x{\endgroup\def\gmp@percent{%}}\x
190 \def\gmp@activesc{\catcode‘\;=\active
191 \begingroup\lccode‘\~=‘\;
192 \lowercase{\endgroup\edef~}{\string;^^J}}
193 \def\gmp@otherchars{\do\!\do\=\do\:\do\"\do\?\do\’\do\‘\do\|}

\gmp@setup The following macro \gmp@setup starts writing the output files, after setting
category codes and something else; it doesn’t write anything if the option
nowrite is in force, otherwise writes a prologue and all needed preliminaries,
up to beginfig(〈number〉); this number is actually irrelevant, because we use
outputtemplate, but it should correspond to the number appearing in the name
of the output file.

194 \def\gmp@setup{%
195 \let\do\@makeother\gmp@otherchars\newlinechar=‘\^^J
196 \gmp@activesc
197 \def\par{^^J}%
198 \ifgmp@nowrite\else
199 \edef\@temp{\gmp@jobname\gmp@ext\gmp@fourdigits{\gmp@number}.mp}%
200 \expandafter\gmp@openout\expandafter\gmp@out\@temp\@nil

34

201 \gmp@write\gmp@out{%
202 \gmp@percent\gmp@percent\space
203 Do not edit, this file has been generated^^J%
204 \gmp@percent\gmp@percent\space
205 automatically by \jobname.tex via gmp.sty^^J^^J%
206 \gmp@doiflatex{verbatimtex\gmp@latexpreamble etex;^^J}%
207 \ifx\empty\gmp@preoptions\else\gmp@preoptions^^J\fi%
208 outputtemplate:= "\gmp@percent j.mps";^^J%
209 beginfig(\gmp@number);%^^J%
210 }%
211 \fi}

\gmp@innermpost This is the central macro which collects the body of the environment; we chose to
use \end as delimiter so that the environment can be used inside other arguments
or definitions; maybe it’s not the best way to do this, but other than requiring
protection of \end commands inside the environment seems to have no side effects.
The environment’s content is written out to the METAPOST file, followed by
endfig; and end; if LATEX is used for the labels, also the closing statements
are added (though they are not strictly necessary). Then \gmp@shellcommand is
performed one or more times according to the value of runs. It will run METAPOST

stopping LATEX momentarily or write the command to the shell script, according
to the current package options. In the case of X ELATEX it will also call or write for
a run of epstopdf. Finally, it executes \end{mpost} and uses the object if it has
been requested to do, that is, if \ifgmp@use is true.

212 \long\def\gmp@innermpost#1\end#2{%
213 \ifgmp@nowrite\else
214 \gmp@write\gmp@out{%
215 #1^^Jendfig;^^Jend.%
216 \gmp@doiflatex{^^Jverbatimtex^^J\string\end{document}^^Jetex}}%
217 \gmp@closeout\gmp@out
218 \count@=\gmp@runs
219 \loop\ifnum\count@>\z@
220 \gmp@shellcommand{\gmp@command\space
221 -tex=\gmp@mpxprogram\space\gmp@jobname\gmp@ext
222 \gmp@fourdigits{\gmp@number}}%
223 \advance\count@\m@ne
224 \repeat
225 \ifxetex
226 \gmp@shellcommand{epstopdf --hires \gmp@jobname\gmp@ext
227 \gmp@fourdigits{\gmp@number}.mps}%
228 \fi
229 \fi
230 \egroup
231 \end{#2}\ifgmp@use
232 \gmp@usempost{\thegmp@count}\fi}

\usempost The macros for using the compiled pictures are almost straightforward: the files
will have extension .mps for LATEX or pdfLATEX and .pdf for X ELATEX. We check
that they exist and load them or issue a warning.

35

233 \ifxetex
234 \def\gmp@usempost#1{%
235 \edef\gmp@thempsfile{\gmp@jobname\gmp@ext\gmp@fourdigits{#1}}%
236 \IfFileExists{\gmp@thempsfile.pdf}%
237 {\includegraphics{\gmp@thempsfile.pdf}}%
238 {\gmp@nemessage\gmp@box}}
239 \newcommand\usempost[2][]{%
240 \IfFileExists{\gmp@jobname\gmp@ext\csname gmp@fig#2\endcsname.pdf}%
241 {\includegraphics[#1]
242 {\gmp@jobname\gmp@ext\csname gmp@fig#2\endcsname.pdf}}%
243 {\gmp@nemessage\gmp@box}}
244 \else
245 \def\gmp@usempost#1{%
246 \edef\gmp@thempsfile{\gmp@jobname\gmp@ext\gmp@fourdigits{#1}}%
247 \IfFileExists{\gmp@thempsfile.mps}%
248 {\includegraphics[hiresbb]{\gmp@thempsfile.mps}}%
249 {\gmp@nemessage\gmp@box}}
250 \newcommand\usempost[2][]{%
251 \IfFileExists{\gmp@jobname\gmp@ext\csname gmp@fig#2\endcsname.mps}%
252 {\includegraphics[hiresbb,#1]
253 {\gmp@jobname\gmp@ext\csname gmp@fig#2\endcsname.mps}}%
254 {\gmp@nemessage\gmp@box}}
255 \fi
256 \def\gmp@box{\fbox{\@ifundefined{color}{}{\color{red}}MP}}

Now we clean up our directory from the auxiliary files, at the user’s request,
of course. The clean keyword may be specified in the package options or in
\gmpoptions to have a value among none, aux, or mp.

At end document we look at the value of this key and do what’s desired by the
user. If the value is not recognized we issue a warning and act as if clean=none
had been given; otherwise we execute the requested command or write them in the
batch script.

257 \AtEndDocument{%
258 \@ifundefined{gmp@doclean@\gmp@clean}
259 {\expandafter\gmp@badcleaning\expandafter{\gmp@clean}}
260 {\@nameuse{gmp@doclean@\gmp@clean}}}
261 \def\gmp@badcleaning#1{\PackageWarningNoLine{gmp}{%
262 Wrong cleaning option ‘clean=#1’; ‘clean=none’ used}}
263 \def\gmp@doclean@none{}
264 \def\gmp@doclean@aux{%
265 \gmp@shellcommand{\gmp@remove\space
266 \jobname\gmp@ext*.log\space\gmp@postremove}%
267 \gmp@shellcommand{\gmp@remove\space
268 \jobname\gmp@ext*.mpx\space\gmp@postremove}%
269 \gmp@shellcommand{\gmp@remove\space
270 \jobname\gmp@ext*.mpo\space\gmp@postremove}%
271 }
272 \def\gmp@doclean@mp{%
273 \gmp@shellcommand{\gmp@remove\space

36

274 \jobname\gmp@ext*.log\space\gmp@postremove}%
275 \gmp@shellcommand{\gmp@remove\space
276 \jobname\gmp@ext*.mpx\space\gmp@postremove}%
277 \gmp@shellcommand{\gmp@remove\space
278 \jobname\gmp@ext*.mpo\space\gmp@postremove}%
279 \gmp@shellcommand{\gmp@remove\space
280 \jobname\gmp@ext*.mp\space\gmp@postremove}%
281 \ifxetex
282 \gmp@shellcommand{\gmp@remove\space
283 \jobname\gmp@ext*.mps\space\gmp@postremove}%
284 \fi}

\verbatimtex
\btex

Final definition for not expanding macros in the METAPOST labels.
285 \long\def\verbatimtex#1etex{verbatimtex \unexpanded{#1} etex}
286 \long\def\btex#1etex{btex \unexpanded{#1} etex}

References
[1] Hans Hagen, Metafun, http://www.pragma-ade.nl/general/manuals/

metafun-p.pdf

[2] Alan Hoenig, TEX unbound, Oxford University Press, Oxford and New York,
1998.

[3] Steve Peter, “\starttext, Swelled Rules and METAPOST”, The PracTEX
Journal, n. 4 (2005).

Change History

v1.0
General: Initial version 1

Index
Numbers written in italic refer to the page where the corresponding entry is
described; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\% 189
\@bsphack 146
\@esphack 152
\@ptsize 117
\^ 195
\| 193

\~ 191

A
\AtEndDocument

. 95, 141, 257

B
\btex 285

C
\Collect@Body 157

D
\DeclareOptionX 15,

17, 20, 21, 23, 24,
26, 27, 30, 32, 34, 35

37

E
environments:

mpost 145
mpost* 153

\ExecuteOptionsX 38, 39

G
\gmp@activesc . 190, 196
\gmp@badcleaning 259, 261
\gmp@box 238,

243, 249, 254, 256
\gmp@chooselatex . . 164
\gmp@choosetex 163
\gmp@clean . . 32, 258–260
\gmp@closeout 77, 82, 217
\gmp@command . . . 83, 220
\gmp@commands

. 119, 126,
133, 135, 137, 176

\gmp@doclean@aux . . 264
\gmp@doclean@mp . . . 272
\gmp@doclean@none . . 263
\gmp@doiflatex

. . . . 165, 206, 216
\gmp@envname

. . 26, 145, 154–156
\gmp@ext

27, 66, 92, 199,
221, 226, 235,
240, 242, 246,
251, 253, 266,
268, 270, 274,
276, 278, 280, 283

\gmp@fourdigits . . .
. 158, 171, 199,
222, 227, 235, 246

\gmp@grab 151, 181
\gmp@innermpost 188, 212
\gmp@jobname . . . 37,

66, 92, 199, 221,
226, 235, 240,
242, 246, 251, 253

\gmp@latexfalse . . . 16
\gmp@latexpreamble .

. . . . 115, 122, 206
\gmp@latextrue 18
\gmp@locallatexfalse

. 16, 163
\gmp@locallatextrue

. 18, 164

\gmp@message 73, 78, 103
\gmp@mpmem

. 90, 101, 166, 173
\gmp@mpxprogram . . .

. . 15, 17, 178, 221
\gmp@msgdisallowed .

. 57, 85
\gmp@msgensure . 67, 107
\gmp@msgnonexistent

. 60, 88
\gmp@msgremember 65, 95
\gmp@msgrequestx 62, 97
\gmp@nemessage

. 59, 85, 88, 97,
238, 243, 249, 254

\gmp@nogenfalse 21
\gmp@nogentrue . . 20, 54
\gmp@not@a@name@ 162, 185
\gmp@nowritefalse . . 24
\gmp@nowritetrue . . 23
\gmp@number 150, 171,

199, 209, 222, 227
\gmp@openout 75, 80, 200
\gmp@otherchars 193, 195
\gmp@out 139,

200, 201, 214, 217
\gmp@packages . . 118,

125, 128, 130, 132
\gmp@percent 116, 123,

189, 202, 204, 208
\gmp@postremove . . .

. 35, 266,
268, 270, 274,
276, 278, 280, 283

\gmp@preoptions . . .
29, 30, 48, 174, 207

\gmp@remove . 34, 265,
267, 269, 273,
275, 277, 279, 282

\gmp@runs 180, 218
\gmp@setup 188, 194
\gmp@setupmacros . .

. 83, 112, 113
\gmp@shellcommand . .

. . 94, 102, 107,
220, 226, 265,
267, 269, 273,
275, 277, 279, 282

\gmp@shellescape . .
. . . . 47, 51, 53, 98

\gmp@shellout . . . 91–94
\gmp@thempsfile . . .

. 235–237, 246–248
\gmp@thisname . 169, 185
\gmp@usefalse 147
\gmp@usempost

. . . . 232, 234, 245
\gmp@usetrue 186
\gmp@warnfalse 95
\gmp@warntrue 61
\gmp@write 76, 81, 201, 214
\gmp@writeunex 153, 157
\gmp@writexviii . . .

. 74, 79, 104
\gmpoptions 113

I
\ifgmp@latex 7, 165
\ifgmp@locallatex 8, 165
\ifgmp@nogen 11, 87
\ifgmp@nowrite

. . 12, 84, 198, 213
\ifgmp@use 167, 231
\ifgmp@warn . . 13, 61, 95
\ifxetex 46, 225, 233, 281
\includegraphics . .

. 237, 241, 248, 252

M
\mpdim 138
mpost (environment) . 145
mpost* (environment) 153
\mpxcommands 133

N
\newwrite 91, 139

O
\openout 80, 92

P
\pdfshellescape . 50, 51
\ProcessOptionsX . . . 41

R
\resetmpxcommands . . 137
\resetmpxpackages . . 132

S
\setkeys . . 113, 182–184
\shellescape 47

38

T

\thegmp@count
. . . . 148, 150, 232

U
\unexpanded 155, 285, 286
\usempost 233
\usempxclass 121
\usempxpackage 121

V
\verbatimtex 285

W
\write . . . 79, 81, 93, 94

39

